Tetanus is an acute, often fatal, disease caused by an exotoxin produced by the bacterium Clostridium tetani.

Tetanus: diagnosis, complications and management

Tetanus is an acute, often fatal, disease caused by an exotoxin produced by the bacterium Clostridium tetani. It is characterized by generalized rigidity and convulsive spasms of skeletal muscles. The muscle stiffness usually involves the jaw (lockjaw) and neck and then becomes generalized. 

Tetanus is an acute, often fatal, disease caused by an exotoxin produced by the bacterium Clostridium tetani.

Although records from antiquity (5th century BCE) contain clinical descriptions of tetanus, it was Carle and Rattone in 1884 who first produced tetanus in animals by injecting them with pus from a fatal human tetanus case. During the same year, Nicolaier produced tetanus in animals by injecting them with samples of soil. In 1889, Kitasato isolated the organism from a human victim, showed that it produced disease when injected into animals, and reported that the toxin could be neutralized by specific antibodies. 
In 1897, Nocard demonstrated the protective effect of passively transferred antitoxin, and passive immunization in humans was used for treatment and prophylaxis during World War I. A method for inactivating tetanus toxin with formaldehyde was developed by Ramon in the early 1920’s which led to the development of tetanus toxoid by Descombey in 1924.  It was first widely used during World War II

Clostridium tetani

C.tetani is a slender, gram-positive, anaerobic rod that may develop a terminal spore, giving it a drumstick appearance. The organism is sensitive to heat and cannot survive in the presence of oxygen. The spores, in contrast, are very resistant to heat and the usual antiseptics. They can survive autoclaving at 249.8°F (121°C) for 10–15 minutes. The spores are also relatively resistant to phenol and other chemical agents. 

The spores are widely distributed in soil and in the intestines and feces of horses, sheep, cattle, dogs, cats, rats, guinea pigs, and chickens. Manure-treated soil may contain large numbers of spores. In agricultural areas, a significant number of human adults may harbor the organism. The spores can also be found on skin surfaces and in contaminated heroin. 


C.tetani produces two exotoxins, tetanolysin and tetano- spasmin. The function of tetanolysin is not known with certainty. Tetanospasmin is a neurotoxin and causes the clinical manifestations of tetanus. On the basis of weight, tetanospasmin is one of the most potent toxins known.  The estimated minimum human lethal dose is 2.5 nanograms per kilogram of body weight (a nanogram is  one billionth of a gram), or 175 nanograms for a 70-kg (154lb) human. 


C. tetani usually enters the body through a wound. In the presence of anaerobic (low oxygen) conditions, the spores germinate. Toxins are produced and disseminated via blood and lymphatics. Toxins act at several sites within the central nervous system, including peripheral motor end plates, spinal cord, and brain, and in the sympathetic nervous system. The typical clinical manifestations of tetanus are caused when tetanus toxin interferes with release of neurotransmitters, blocking inhibitor impulses. This leads to unopposed muscle contraction and spasm. Seizures may occur, and the autonomic nervous system may also  be affected. 


Organisms are found primarily in the soil and intestinal tracts of animals and humans.

Mode of Transmission 

Transmission is primarily by contaminated wounds (apparent and inapparent). The wound may be major or minor. In recent years, however, a higher proportion of patients had minor wounds, probably because severe wounds are more likely to be properly managed. Tetanus may follow elective surgery, burns, deep puncture wounds, crush wounds, otitis media (ear infections), dental infection, animal bites, abortion, and pregnancy. 


Tetanus is not contagious from person to person. It is  the only vaccine-preventable disease that is infectious  but not contagious.

Clinical Features 

The incubation period ranges from 3 to 21 days, usually about 8 days. In general the further the injury site is from the central nervous system, the longer is the incubation period. Shorter incubation periods are associated with a  higher chance of death. In neonatal tetanus, symptoms usually appear from 4 to 14 days after birth, averaging about 7 days. 
On the basis of clinical findings, three different forms of tetanus have been described.

Local tetanus is an uncommon form of the disease, in which patients have persistent contraction of muscles in the same anatomic area as the injury. These contractions may persist for many weeks before gradually subsiding. Local tetanus may precede the onset of generalized tetanus but is generally milder. Only about 1% of cases are fatal. 

Cephalic tetanus is a rare form of the disease, occasionally occurring with otitis media (ear infections) in which C. tetani is present in the flora of the middle ear, or following injuries to the head. There is involvement of the cranial nerves, especially in the facial area.

The most common type (about 80%) of reported tetanus is generalized tetanus. The disease usually presents with a descending pattern. The first sign is trismus or lockjaw, followed by stiffness of the neck, difficulty in swallowing, and rigidity of abdominal muscles. Other symptoms include elevated temperature, sweating, elevated blood pressure, and episodic rapid heart rate. Spasms may occur frequently and last for several minutes. Spasms continue for 3–4 weeks. Complete recovery may take months.

Neonatal tetanus (NT) is a form of generalized tetanus that occurs in newborn infants. Neonatal tetanus occurs in infants born without protective passive immunity, because the mother is not immune. It usually occurs through infection of the unhealed umbilical stump, particularly when the stump is cut with an unsterile instrument. Neonatal tetanus is common in some developing countries but very rare in the United States. World Health Organization (WHO) estimates that in 2010, 58,000 newborns died from NT, a 93% reduction from the situation in the late 1980s.


Laryngospasm (spasm of the vocal cords) and/or spasm of the muscles of respiration leads to interference with breathing. Fractures of the spine or long bones may result from sustained contractions and convulsions. Hyperactivity of the autonomic nervous system may lead to hypertension and/or an abnormal heart rhythm. 

Nosocomial infections are common because of prolonged hospitalization. Secondary infections may include sepsis from indwelling catheters, hospital-acquired pneumonias, and decubitus ulcers. Pulmonary embolism is particularly a problem in drug users and elderly patients. Aspiration pneumonia is a common late complication of tetanus, found in 50%–70% of autopsied cases. In recent years, tetanus has been fatal in approximately 11% of reported cases. Cases most likely to be fatal are those occurring in persons 60 years of age and older (18%) and unvaccinated persons (22%). In about 20% of tetanus deaths, no obvious pathology is identified and death is attributed to the direct effects of tetanus toxin. 

Laboratory Diagnosis 

No laboratory findings are characteristic of tetanus. The diagnosis is entirely clinical and does not depend upon bacteriologic confirmation. C. tetani is recovered from the wound in only 30% of cases and can be isolated from patients who do not have tetanus. Laboratory identification of the organism depends most importantly on the demon- stration of toxin production in mice. 

Medical Management 

All wounds should be cleaned. Necrotic tissue and foreign material should be removed. If tetanic spasms are occurring, supportive therapy and maintenance of an adequate airway are critical.
Tetanus immune globulin (TIG) is recommended for persons with tetanus. TIG can only help remove unbound tetanus toxin. It cannot affect toxin bound to nerve endings. A single intramuscular dose of  500 units is generally recommended for children and adults, with part of the dose infiltrated around the wound if it can be identified. Intravenous immune globulin (IVIG) contains tetanus antitoxin and may be used if TIG is not available.


Because of the extreme potency of the toxin, tetanus disease does not result in tetanus immunity. Active immunization with tetanus toxoid should begin or continue as soon as the person’s condition has stabilized. 

Wound Management 

Antibiotic prophylaxis against tetanus is neither practical nor useful in managing wounds; proper immunization plays the more important role. The need for active immunization, with or without passive immunization, depends on the condition of the wound and the patient’s immunization history. Rarely have cases of tetanus occurred in persons with a documented primary series of tetanus toxoid.
Persons with wounds that are neither clean nor minor, and who have had fewer than 3 prior doses of tetanus toxoid or have an unknown history of prior doses should receive TIG as well as Td or Tdap. This is because early doses of toxoid may not induce immunity, but only prime the immune system. The TIG provides temporary immunity by directly providing antitoxin. This ensures that protective levels of antitoxin are achieved even if an immune response has not yet occurred.


Leave a Reply

%d bloggers like this: